miércoles, 6 de abril de 2011

Recapitulacción 12


Recapitulación 12
Resumen martes y jueves.
Aclaración de dudas.
Registro de asistencia.

Equipo
Resumen martes y jueves
1

2
El día martes vimos los modelos atómicos de Bohr, el jueves hicimos un experimento en el cual, pudimos observar  los colores producidos por la aplicación de energía en los diferentes elementos.
3

4
Vimos el modelo de Bohr, y observamos colores producidos por la aplicación de energía en los diferentes elementos.
5

6
Dimos un pequeño vistazo a los modelos atómicos de Bohr, también elaboramos un experimento, en el pudimos observar  los niveles electrónicos de distintos elementos y el jueves vimos los diferentes  espectros de algunos gases ionizados.



Eq.
N Principal
L Secundario
M
Magnético
Figura del orbital
1
2
1
1

2
3
2
1

3
4
3
1

4
5
4
1

5
6
5
1



6
7
6
1

Semana 12 Jueves

El Tubo de Crookes es un cono de vidrio con 1 ánodo y 2 cátodos. Es una invención pero mas en parte una innovacion del científico William Crookes en el siglo XIX, y es una versión más evolucionada del desarrollo del Tubo de Geissler.

Descripción y utilización

Consiste en un tubo de vacío por el cual circulan una serie de gases, que al aplicarles electricidad adquieren fluorescencia, de ahí que sean llamados fluorescentes. A partir de este experimento (1895) Crookes dedujo que dicha fluorescencia se debe a rayos catódicos, que consisten en electrones en movimiento, y, por tanto, también descubrió la presencia de electrones en los átomos.
Al final del cono de vidrio, una banda calentada eléctricamente, llamada cátodo, produce electrones. Al lado opuesto, una pantalla tapada de fósforo forma un ánodo el que está conectado al terminal positivo del voltaje (unos cien voltios), del cual su polo negativo está conectado al cátodo.

La Cruz de Malta

Crookes para comprobar la penetrabilidad de rayos catódicos, debe realizar un tercer tubo, el cual llama la cruz de Malta, ya que entre el cátodo y el ánodo está localizado un tercer elemento, una cruz hecha de Zinc, un elemento muy duro.
El experimento consistía en que el rayo se estrellaba contra la cruz y la rodeaba, para posteriormente generar una sombra al final del tubo. Con este tubo es posible demostrar que los rayos catódicos se propagan en línea recta. Una pantalla metálica con forma de cruz de Malta, se dispone de modo que intercepte el haz de los rayos catódicos, produciendo una zona de sombra sobre la pantalla que satisface las leyes de la propagación de las ondas rectilíneas.
 Aplicación del Tubo de pantalla

semana 12

El Tubo de Crookes es un cono de vidrio con 1 ánodo y 2 cátodos. Es una invención pero mas en parte una innovacion del científico William Crookes en el siglo XIX, y es una versión más evolucionada del desarrollo del Tubo de Geissler.

Descripción y utilización

Consiste en un tubo de vacío por el cual circulan una serie de gases, que al aplicarles electricidad adquieren fluorescencia, de ahí que sean llamados fluorescentes. A partir de este experimento (1895) Crookes dedujo que dicha fluorescencia se debe a rayos catódicos, que consisten en electrones en movimiento, y, por tanto, también descubrió la presencia de electrones en los átomos.
Al final del cono de vidrio, una banda calentada eléctricamente, llamada cátodo, produce electrones. Al lado opuesto, una pantalla tapada de fósforo forma un ánodo el que está conectado al terminal positivo del voltaje (unos cien voltios), del cual su polo negativo está conectado al cátodo.

La Cruz de Malta

Crookes para comprobar la penetrabilidad de rayos catódicos, debe realizar un tercer tubo, el cual llama la cruz de Malta, ya que entre el cátodo y el ánodo está localizado un tercer elemento, una cruz hecha de Zinc, un elemento muy duro.
El experimento consistía en que el rayo se estrellaba contra la cruz y la rodeaba, para posteriormente generar una sombra al final del tubo. Con este tubo es posible demostrar que los rayos catódicos se propagan en línea recta. Una pantalla metálica con forma de cruz de Malta, se dispone de modo que intercepte el haz de los rayos catódicos, produciendo una zona de sombra sobre la pantalla que satisface las leyes de la propagación de las ondas rectilíneas.
 Aplicación del Tubo de pantalla

imites de la aplicabilidad de la mecanica clasica y origen de la fisica relativista

Física clásica

La física que impera hasta finales del siglo XIX se fundamenta en la relación causa-efecto (todo efecto es producido por una causa de existencia previa), en la creencia de que el único límite al conocimiento de las cosas reside en la sofisticación del aparato de medida necesario para obtenerlo y en que las leyes de la física son expresables mediante una ecuación matemática, más o menos sencilla, cuya solución es única y determinista. Concibe la transmisión del efecto con velocidad infinita (relación causa-efecto instantánea). Las herramientas de que dispone son la concepción galileana del espacio, las leyes de Newton de la dinámica y el cálculo infinitesimal.
Esta física explica en términos de ecuaciones sencillas y fenómenos bien conocidos la mayoría de los efect
s naturales observables a simple vista, dando una descripción adecuada y muy útil de ellos.

Física relativista

Tras los trabajos de A. Einstein, en los que el tiempo pasaba de ser una variable independiente del espacio a ser una variable más, acoplada a las variables espaciales, el concepto de simultaneidad de sucesos dejó de tener sentido como absoluto y pasa a depender explícitamente de la posición y estado dinámico del observador, es decir, se relativiza. Esta concepción de relatividad obligó a revisar conceptos clave como masa y energía.
La física clásica es deducida de la física relativista cuando la velocidad de los observadores es mucho menor que la velocidad de la luz, que se toma como constante universal.

Naturaleza dual de la materia: electrones, nucleos y particulas elementales


El descubrimiento de las partículas subatómicas como los protones, los electrones y los neutrones, a finales del siglo XIX, impulsó a los químicos de la época a proponer modelos para explicar cómo estaban constituidos los átomos.
Rutherford hizo pasar un haz de partículas a (cargadas positivamente y que eran emitidas por un elemento radiactivo como el polonio, Po) por una rendija, haciéndolo incidir en una lámina de oro muy delgada, de unos 400 átomos de oro de espesor. Los resultados del experimento se visualizaban en una placa fotográfica. La gran mayoría de las partículas a no sufrían desviación alguna en su trayectoria. Algunas eran desviadas un cierto ángulo y otras, muy pocas, eran fuertemente desviadas al atravesar la lámina de oro. De los resultados obtenidos en este experimento Rutherford propuso que el átomo era esférico y en su centro se concentraba toda la carga positiva y casi la totalidad de la masa atómica. Alrededor de dicho centro o núcleo giraban los electrones, de manera que el número de electrones era igual al de protones. El núcleo ocupaba, según Rutherford, un espacio muy pequeño comparado con el volumen total ocupado por el átomo, de tal suerte que éste podría considerarse prácticamente hueco. Ello explicaría que la mayoría de las partículas a no se desviaran al atravesar la lámina de oro mientras que las que sufrían desviación eran aquellas que se aproximaban al núcleo de los átomos de oro. Sin embargo, este modelo era inconsistente con los postulados de la Física Clásica: toda partícula en movimiento emite energía, por lo que la propuesta de Rutherford supondría la existencia de átomos inestables, que emitirían una radiación continua en todas las longitudes de onda.
En 1885, Balmer había demostrado que los átomos cuando emiten radiación lo hacen de forma discontinua, es decir, se obtiene un espectro discreto. Cualquier modelo atómico tendría que explicar este hecho, y el de Rutherford no estaba en concordancia con ello

. El modelo de Bohr constaba de una serie de postulados:
  • El átomo está constituido por una zona central o núcleo donde se concentra toda la masa y la carga positiva del átomo.
  • Los electrones giran entorno al núcleo en órbitas circulares estacionarias, de modo que Fc = Fa. (Fc = fuerza centrífuga; Fa = fuerza centrípeta).
  • Los electrones sólo se mueven en órbitas estables, que son aquellas cuyo momento angular presenta un valor que es un múltiplo entero de la constante de Plank:
H = mvr = nh/2π, donde n = 1, 2, 3,... (n, número cuántico).
El átomo de hidrógeno de Bohr
Material: Tubos de descarga, hidrogeno, Helio, oxigeno, nitrógeno, argón, kriptón, neón, fuente de poder, lentes panorámicos.
Procedimiento:
Colocar cada uno, de los tubos de descarga en la fuente de poder, encender la fuente de poder y observar la o colores generados por cada gas.

Tubo de descarga
Nombre y símbolo
Numero de electrones
Modelo atómico de Bohr
Color en la fuente de poder
Hidrogeno
1

rosa
Helio
2

Verde azul amarillo
Oxigeno
8

Amarillo, azul y verde
Nitrógeno
7


Rojo amarillo y verde
Neón
10


Verde y amarillo
Argón
18

Modelo atomico de Bohr

6.4 Modelo atómico de Bohr.
6.5 Naturaleza dual de la materia: electrones, núcleos y partículas elementales
6.6 Límites de aplicabilidad de la mecánica clásica y origen de la física relativista.
1
Bohr describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón.
En éste modelo los electrones giran en órbitas circulares alrededor del núcleo; ocupando la órbita de menor energía posible, o sea la órbita más cercana posible al núcleo.
Podemos definir las partículas elementales como aquellas cuya estructura interna no podía ser descrita (en el estado actual del conocimiento) como una simple combinación de otras partículas.Al introducir el estado de conocimiento que se tiene del mundo subatómico en la definición de las partículas elementales, hemos de tener en cuenta que éstas, al variar lo que sabemos del mundo atómico, cambian. Podemos, de hecho, distinguir (muy arbitrariamente) cuatro etapas en la historia de las partículas elementales.
teoría general de la relatividad orelatividad generales una teoría del campo gravitatorio y de los sistemas de referencia generales, publicada por Albert Einstein en 1915 y1916.El nombre de la teoría se debe a que generaliza la llamadateoría especial de la relatividad. Los principios fundamentales introducidos en esta generalización son elPrincipio de equivalencia, que describe laaceleración y lagravedad como aspectos distintos de la misma realidad, la noción de lacurvatura del espacio-tiempo y elprincipio de covariancia
2
Recuerda al modelo planetario de Copérnico, los planetas describiendo órbitas circulares alrededor del Sol. El electrón de un átomo o ión hidrogenoide describe también órbitas circulares, pero los radios de estas órbitas no pueden tener cualquier valor.
Consideremos un átomo o ión con un solo electrón. El núcleo de carga Ze es suficientemente pesado para considerarlo inmóvil,

Para Newton la luz estaba formada por pequeñísimos corpúsculos o partículas, y demostró las leyes de la reflexión y la refracción, en base a esa teoría. La luz se reflejaría como lo puede hacer una pelota cuando rebota sobre una superficie, y se refractaría al pasar de un medio a otro por la diferencia de velocidad de transmisión en los dos medios, pero no explicaba otros fenómenos como por ejemplo la difracción.

La mecánica clásica se subdivide en las ramas de la estática, que trata con objetos en equilibrio (objetos que se consideran en un sistema de referencia en el que están parados) y ladinámica, que trata con objetos que no están en equilibrio(objetos enmovimiento). La Mecánica Clásica reduce su estudio al dominio de laexperiencia diaria, es decir, con eventos que vemos o palpamos con nuestros sentidos. Tiene diversas extensiones: Lamecánica relativistava más allá de la mecánica clásica y trata con objetos moviéndose avelocidades grandes (de valor relativamente próximo a la velocidad de la luz).
3
El núcleo está compuesto por protones y neutrones. El número Z de protones coincide con el número de electrones en un átomo neutro. La masa de un protón o de un neutrón es aproximadamente 1850 veces la de un electrón. En consecuencia, la masa de un átomo es prácticamente igual a la del núcleo.
Sin embargo, los electrones de un átomo son los responsables de la mayoría de las propiedades atómicas que se reflejan en las propiedades macroscópicas de la materia.El movimiento de los electrones alrededor del núcleo se explica, considerando solamente las interacciones entre el núcleo y los electrones (la interacción gravitatoria es completamente despreciable).El modelo de Bohr es muy simple y recuerda al modelo planetario de Copérnico, los planetas describiendo órbitas circulares alrededor del Sol. El electrón de un átomo o ión hidrogenoide describe también órbitas circulares, pero los radios de estas órbitas no pueden tener cualquier valor.
Consideremos un átomo o ión con un solo electrón.


La naturaleza ondulatoria es inherente a cada cuerpo. La importancia del hecho radica en que en ocasiones la luz se comporta de una u otra forma.Louis de Broglie postuló la dualidad en su forma:lambda=h/mxv
Donde lambda= la longitud de onda (metros)
h=Constante de Planck (6.626x10-34 Jxs)
m=masa (kg)
v=velocidad (m/s)
No muchos años más tarde, el francés Louis de Broglie propondría en su doctorado que si la luz                                                                   era una partícula y una onda a la vez, también el resto de partículas podrían serlo. El problema para detectar la onda de las partículas es que la longitud de ésta es inversamente proporcional a la masa y a la velocidad de la partícula. Por tanto, por poco grande que fuera la masa de una partícula, su onda ya era demasiado pequeña para ser observada. No obstante esto se lograría poco después en un experimento con unas partículas lo suficientemente poco masivas como para tener una onda “visible” y bastante manejable: los electrones. En el experimento se observó que los electrones tenían un comportamiento exclusivo de las ondas: la difracción. No explicaré ahora en qué consiste éste fenómeno, pero el caso es que  bastó para ver que las partículas también pueden ser descritas como ondas, con su frecuencia y su longitud de onda, demostrándose así la dualidad onda-partícula.Todo esto no significa que cuando una partícula se mueve está “arrastrando” una onda tras de ella, sino que puede ser descrita como onda: de igual modo que puede describirse asignándole toda una serie de características propias de las partículas (masa, velocidad...), se puede describir utilizando una función de onda, es decir, también observamos las características de las ondas. Y si resulta que tiene las características que definen a una onda... es que es una onda..

La física que impera hasta finales del siglo XIX se fundamenta en la relación causa-efecto (todo efecto es producido por una causa de existencia previa), en la creencia de que el único límite al conocimiento de las cosas reside en la sofisticación del aparato de medida necesario para obtenerlo y en que las leyes de la física son expresables mediante una ecuación matemática, más o menos sencilla, cuya solución es única y determinista. Concibe la transmisión del efecto con velocidad infinita (relación causa-efecto instantánea). Las herramientas de que dispone son la concepción galileana del espacio, las leyes de Newton de la dinámica y el cálculo infinitesimal.Esta física explica en términos de ecuaciones sencillas y fenómenos bien conocidos la mayoría de los efectos naturales observables a simple vista, dando una descripción adecuada y muy útil de ellos.Física relativistaTras los trabajos de A. Einstein, en los que el tiempo pasaba de ser una variable independiente del espacio a ser una variable más, acoplada a las variables espaciales, el concepto de simultaneidad de sucesos dejó de tener sentido como absoluto y pasa a depender explícitamente de la posición y estado dinámico del observador, es decir, se relativiza. Esta concepción de relatividad obligó a revisar conceptos clave como masa y energía.La física clásica es deducida de la física relativista cuando la velocidad de los observadores es mucho menor que la velocidad de la luz, que se toma como constante universal.

4
El modelo atómico de Bohr o de Bohr-Rutherford es un modelo cuantizado del átomo propuesto en 1913por el físico danés Niels Bohr, para explicar cómo loselectrones pueden tener órbitas estables alrededor del núcleo y por qué los átomospresentaban espectrosdeemisióncaracterísticos(dosproblemas que eran ignorados en el modelopreviodeRutherford).Ademásel modelo de Bohr incorporaba ideas tomadas del efecto fotoeléctrico, explicado por Albert Einstein en 1905.
La naturaleza ondulatoria es inherente a cada cuerpo. La importancia del hecho radica en que en ocasiones la luz se comporta de una u otra forma.Louis de Broglie postuló la dualidad en su forma:lambda=h/mxv
Donde lambda= la longitud de onda (metros)
h=Constante de Planck (6.626x10-34 Jxs)
m=masa (kg)
v=velocidad (m/s)
Física clásica
La física que impera hasta finales del siglo XIX se fundamenta en la relación causa-efecto (todo efecto es producido por una causa de existencia previa), en la creencia de que el único límite al conocimiento de las cosas reside en la sofisticación del aparato de medida necesario para obtenerlo y en que las leyes de la física son expresables mediante una ecuación matemática, más o menos sencilla, cuya solución es única y determinista. Concibe la transmisión del efecto con velocidad infinita (relación causa-efecto instantánea).
5
El átomo de hidrógeno según el modelo atómico de Bohr
¤ El átomo de hidrógeno tiene un núcleo con un protón.El átomo de hidrógeno tiene un electrón que está girando en la primera órbita alrededor del núcleo. Esta órbita es la de menor energía.
¤ Si se le comunica energía a este electrón, saltará desde la primera órbita a otra de mayor energía. cuando regrese a la primera órbita emitirá energía en forma de radiación luminosa
El átomo es la parte más pequeña en la que se puede obtener materia de forma estable, ya que las partículas subatómicas que lo componen no pueden existir aisladamente salvo en condiciones muy especiales. El átomo está formado por un núcleo, compuesto a su vez por protones y neutrones, y por una corteza que lo rodea en la cual se encuentran los electrones, en igual número que los protones.Un electrón es una partícula subatómica de carga negativa. Puede ser libre (no conectado a un átomo, o conexionado al núcleo de un átomo. Los electrones en los átomos existen en corazas esféricas de varios radii, representando los niveles de energía. Cuanto más grandes sean estas corazas esféricas, mayor será la energía que contiene el electrón.
Podemos definir las partículas elementales como aquellas cuya estructura interna no podía ser descrita (en el estado actual del conocimiento) como una simple combinación de otras partículas.Al introducir el estado de conocimiento que se tiene del mundo subatómico en la definición de las partículas elementales, hemos de tener en cuenta que éstas, al variar lo que sabemos del mundo atómico, cambian. Podemos, de hecho, distinguir (muy arbitrariamente) cuatro etapas en la historia de las partículaselementales El núcleo atómico es la parte central de un átomo, tiene carga positiva, y concentra más del 99.99% de la masa total del átomo.
Estáformadopor protones y neutrones (denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte, la cual permite que el núcleo sea estable, a pesar de que los protones se repelen entre sí (como los polos iguales de dos imanes). La cantidad de protones en el núcleo determina el elemento químico al que pertenece.
Física clásicaLa física que impera hasta finales del siglo XIX se fundamenta en la relación causa-efecto (todo efecto es producido por una causa de existencia previa), en la creencia de que el único límite al conocimiento de las cosas reside en la sofisticación del aparato de medida necesario para obtenerlo y en que las leyes de la física son expresables mediante una ecuación matemática, más o menos sencilla, cuya solución es única y determinista. Concibe la transmisión del efecto con velocidad infinita (relación causa-efecto instantánea). Las herramientas de que dispone son la concepción galileana del espacio, las leyes de Newton de la dinámica y el cálculo infinitesimal.Esta física explica en términos de ecuaciones sencillas y fenómenos bien conocidos la mayoría de los efect0s naturales observables a simple vista, dando una descripción adecuada y muy útil de ellos.Física relativistaTras los trabajos de A. Einstein, en los que el tiempo pasaba de ser una variable independiente del espacio a ser una variable más, acoplada a las variables espaciales, el concepto de simultaneidad de sucesos dejó de tener sentido como absoluto y pasa a depender explícitamente de la posición y estado dinámico del observador, es decir, se relativiza. Esta concepción de relatividad obligó a revisar conceptos clave como masa y energía.La física clásica es deducida de la física relativista cuando la velocidad de los observadores es mucho menor que la velocidad de la luz, que se toma como constante universal.

6
Propuso un nuevo modelo atómico, según el cual los electrones giran alrededor del núcleo en unos niveles bien definidos.
La naturaleza ondulatoria es inherente a cada cuerpo. La importancia del hecho radica en que en ocasiones la luz se comporta de una u otra forma.Louis de Broglie postuló la dualidad en su forma:lambda=h/mxv
Donde lambda= la longitud de onda (metros)
h=Constante de Planck (6.626x10-34 Jxs)
m=masa (kg)  v=velocidad (m/s)
No muchos años más tarde, el francés Louis de Broglie propondría en su doctorado que si la luz                                                                   era una partícula y una onda a la vez, también el resto de partículas podrían serlo. El problema para detectar la onda de las partículas es que la longitud de ésta es inversamente proporcional a la masa y a la velocidad de la partícula. Por tanto, por poco grande que fuera la masa de una partícula, su onda ya era demasiado pequeña para ser observada.
La mecánica clásicaes una formulación de la mecánica para describir mediante leyes el comportamiento de cuerpos físicos macroscópicos en reposo y a velocidades pequeñas comparadas con la velocidad de la luz.Existen varias formulaciones diferentes, de la mecánica clásica para describir un mismo fenómeno natural, que independientemente de los aspectos formales y metodológicos que utilizan llegan a la misma conclusión.Física relativista: Surge de la observación de que la velocidad de la luz en el vacío es igual en todos los sistemas de referencia inerciales y de sacar todas las consecuencias del principio de relatividad de Galileo, según el cual cualquier experiencia hecha en un sistema de referencia inercial se desarrollará de manera idéntica en cualquier otro sistema inercial