domingo, 21 de noviembre de 2010

Segunda ley de la termodinámica.

La segunda ley de la termodinámica

Nicolás Léonard Sadi Carnot (1796 - 1832) fue hijo de Lazare Carnot, conocido como el Gran Carnot, y tío de Marie François Sadi Carnot, que llegó a ser Presidente de la República Francesa. Sadi Carnot fue un ingeniero y oficial de la milicia francesa y es el pionero y fundador en el estudio de la Termodinámica. 
Hay quienes conceden a Sadi Carnot ser el padre de la Termodinámica, pero su condición de ingeniero indigna a algunos físicos quienes dan la paternidad de la Termodinámica a William Thomson (Lord Kelvin) y a Plank, inclusive se menciona que el concepto de Ciclo Carnot quizá viene de la influencia de Emile Clapeyron quien en 1834 analizó y realizó gráficos del ensayo de Sadi Carnot. 
Licenciado en la Escuela Politécnica, en 1824 publicó Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en donde expuso los dos primeros principios de la termodinámica. Estos trabajos, poco comprendidos, inclusive despreciados por la comunidad científica (algunos físicos prominentes) de la época, fueron más tarde conocidos en Alemania por Rudolf Clausius, que fue quien los difundió y William Thomson (lord Kelvin) quien hizo lo propio en el Reino Unido. Cabe mencionar que el ensayo de Carnot fue recogido por Clausius y Thompson para formular de una manera matemática, las bases de la termodinámica. 
Como reconocimiento a las aportaciones pioneras, el principio de Carnot se rebautizó como principio de Carnot-Clausius. Este principio permite determinar el máximo rendimiento de una máquina térmica en función de las temperaturas de su fuente caliente y de su fuente fría. Cuando Luis XVIII envió a Carnot a Inglaterra para investigar el elevado rendimiento de sus máquinas de vapor, se dio cuenta que la creencia generalizada de elevar la temperatura lo más posible para obtener el vapor mejoraba el funcionamiento de las máquinas. Poco después descubrió una relación entre las temperaturas del foco caliente y frío y el rendimiento de la máquina. Como corolario se obtiene que ninguna máquina real alcanza el rendimiento teórico de Carnot (obtenido siguiendo el ciclo de Carnot), que es el máximo posible para ese intervalo de temperaturas. Toda máquina que sigue este ciclo de Carnot es conocida como máquina de Carnot. 
Sadi Carnot no publicó nada después de 1824 y es probable que él mismo creyera haber fracasado. Su pensamiento es original, único en la historia de la ciencia moderna, pues a diferencia de lo que le sucede a muchos otros científicos, no se apoya en nada anterior y abre un amplio campo a la investigación.

Fenómenos térmicos y contaminación.

Los fenómenos térmicos son aquellos que están relacionados con la emisión y la absorción del calor. Estos fenómenos pueden ser encontrados en cada actividad que el hombre realiza diariamente: el calentamiento de la atmósfera por la radiación solar, la climatización de los locales por medio del aire acondicionado, la cocción de los alimentos y su refrigeración.

Una característica general de los fenómenos térmicos es que existen cuerpos que ceden energía en forma de calor, y otros que son capaces de absorber dicha energía. Con el objetivo de caracterizar cuantitativamente la emisión o la absorción del calor, se ha establecido el concepto cantidad de calor.

La cantidad de calor (Q) se define como la energía cedida o absorbida por un cuerpo de masa (m), cuando su temperatura varía en un número determinado de grados. La cantidad de calor (Q) está relacionada directamente con la naturaleza de la sustancia que compone el cuerpo. La dependencia de la cantidad de calor con la naturaleza de la sustancia se caracteriza por una magnitud denominada calor específico de la sustancia.

El calor específico de la sustancia se representa con la letra C y se define como la cantidad de calor requerida por la unidad de masa de una sustancia para variar su temperatura en 1 °C. El calor específico (C) se expresa en unidades de energía [joule (J), kilocaloría (kcal), caloría (cal), etc.)] por unidades de masa [(gramo (g), kilogramo (kg), libra (lb), etc.] y temperatura [grado centígrado (°C)].
 
La contaminación es cualquier sustancia o forma de energía que puede provocar algún daño o desequilibrio (irreversible o no) en un ecosistema, en el medio físico o en un ser vivo. Es siempre una alteración negativa del estado natural del medio ambiente, y por tanto, se genera como consecuencia de la actividad humana.
Para que exista contaminación, la sustancia contaminante deberá estar en cantidad relativa suficiente como para provocar ese desequilibrio. Esta cantidad relativa puede expresarse como la masa de la sustancia introducida en relación con la masa o el volumen del medio receptor de la misma. Este cociente recibe el nombre deconcentración.
Los agentes contaminantes tienen relación con el crecimiento de la población y el consumo (combustibles fósiles, la generación de basura, desechos industriales, etc.), ya que, al aumentar estos, la contaminación que ocasionan es mayor.
Por su consistencia, los contaminantes se clasifican en sólidos, líquidos y gaseosos. Se descartan los generados por procesos naturales, ya que, por definición, no contaminan.
Los agentes sólidos están constituidos por la basura en sus diversas presentaciones. Provocan contaminación del suelo, del aire y del agua. Del suelo porque produce microorganismos y animales dañinos; del aire porque produce mal olor y gases tóxicos, y del agua porque la ensucia y no puede utilizarse.
Los agentes líquidos incluyen las aguas negras, los desechos industriales, los derrames de combustibles derivados del petróleo, los cuales dañan básicamente el agua de ríos, lagos, mares y océanos, y con ello provocan la muerte de diversas especies.
Los agentes gaseosos incluyen la combustión del petróleo (óxido de nitrógeno y azufre) y la quema de combustibles como la gasolina (que libera monóxido de carbono), la basuray los desechos de plantas y animales.
Todos los agentes contaminantes provienen de una fuente determinada y pueden provocar enfermedades respiratorias y digestivas. Es necesario que la sociedad humana tome conciencia del problema.
  • Concepto de Entropia .
    1.- Desigualdad de Clausius:
    • La desigualdad de Clausiu es una relacion entre las temperasturas de un numero arbitrario de fuentes termicas y las cantidades de calor entregadas o absorbidas por ellas, cuando a una sustancia se le hace recorrer un proceso ciclico arbitrario durante el cual intercambie calor con las fuentes. Esta desigualdad viene dada por:
      dQ / T <= 0
      en el caso de una cantida dinfinita de fuentes. 2.- Entropia: En la desigualdad de Clausius no se han impuesto restricciones con respecto a la reversibilidad o no del proceso, pero si hacemos la restriccion de que el proceso sea reversible podemos ver que no importa el camino que usemos para recorrer el proceso, el cambio de calor dQ va a hacer iqual en un sentido o en otro por lo que llegaremos a que:
      dQ / T = 0
      Como estamos imponiendo que usemos un camino cualquiera esta diferencial es una diferencial exacta y diremos que representa a una funciopn de estado S que pude representarse por dS. Esta cantidad Srecibe el nombre de Entropia del sistema y la ecuacion :
      dQ / T = dS
      establece que la variacion de entropia de un sistema entre dos estados de equilibrio cualesquiera se obtiene llevando el sistema a lo largo de cualquier camino reversible que una dichos estados, dividiendo el calor que se entrega al sistema en cada punto del camino por la temperatura del sistema y sumando los coeficientes asi obtenidos. En la practica, generalmente los procesos no son del todo reversibles por lo que la entropia aumenta , no es conservativay ello es en gran parte el misterio de este concepto.
  • Caracteristicas asociadas a la entropia.
    • La entropia se define solamente para estados de equilibrio.
    • Solamente pueden calcularse variaciones de entropia. En muchos problemas practicos como el diseno de una maquina de vapor , consideramos unicamente diferencias de entropia. Por conveniencia se considera nula la entropia de una sustancia en algunestado de referencia conveniente. Asi se calculan las tablas de vapor, e donde se supone cero la entropia del agua cuando se encuentra en fase liquida a 0'C y presion de 1 atm.
    • La entropia de un sistema en estado se equilibrio es unicamente funcion del estado del sistema, y es independiente de su historia pasada. La entropia puede calcularse como una funcion de las variables termodinamicas del sistema, tales como la presion y la temperatura o la presion y el volumen.
    • La entropia en un sistema aislado aumenta cuando el sistema experimenta un cambio irreversible.
    • Considerese un sistema aislado que contenga 2 secciones separadas con gases a diferentes presiones. Al quitar la separacion ocurre un cambio altamente irreversible en el sistema al equilibrarse las dos presiones. Pero el mediono ha sufrido cambio durante este proceso, asi que su energia y su estado permanecen constantes, y como el cambio es irreversible la entropia del sistema a aumentado.
  • Transferencia de entropia.
    • La entropia esta relacionada con la aleatoriedad del movimiento molecular (energia termica) , por esto, la entropia de un sistema no decrece si no hay cierta interaccion externa. Ocurre que la unica manrea que el hombre conoce de reducir la energia termica es transferirla en forma de calor a otro cuerpo, aumentando asi la energia termica del segundo cuerpo y por ende su entropia. Por otro lado transfiriendo energia termica es posible reducir la entropia de un cuerpo. Si esta transferencia de energia es reversible, la energia total permanece constante, y si es irreversible la entropia aumenta. De lo anterior se concluye que el calor es un flujo de entropia. En el caso de la transferencia de energia mecanica, i.e. fde trabajo, no hay un flujo directo de entropia. Si la transferencia de energia mecanica en un sistema se realiza con irreversibilidad se producen aumentos de entropia en el sistema, es decir se generan entropia. Esta generacion de entropia trae consigo una perdida de trabajo utilizable debido a la degradacionde la energia mecanica producido por la irreversibilidades presentes como lo es el roce.
  • Irreversibilidad y entropia.
    • Ahora nos podriamos preguntar : De que depende la reversibilidad de un proceso??. Una respuesta a esto es decir que la variacion de entropia es el criterio que permite establecer el sentido en que se produciran un proceso determinado que cumpla con el primer principio de la termodinamica. Asi, el ingeniero mecanico esta interesado en la reversibilidad y en las variaciones de entropia por que desde su punto de vista algo se ha "perdido" cuandoo se ha producido un prceso irreversible, en una maquina de vapor io en una turbina. Lo que se ha perdido, sin embargo, no es enrgia, sino una oprtunidad. La oprtunidad de transformar energia termica en energia mecanica. Puesto que la energia interna de una sustancia que evoluciona en una maquina termica se recupera generalmente por absorcion del calor, decimos que lo que se pierde es una oprtunidad de converretir calor en trabajo mecanico. Es imposible extraer calor de una unica fuente y hacer funcionar una maquina ciclica; en cambio podriamos hacer hacer funcionar una maquina etre dos fuentes, una caliente y otra fria, extrayendo calor de una y entregandosela a la otra, y disponiendo de una parte de ese calor para producir trabajo mecanico. Una vez que las fuentes han alcanzado la misma temperatura, esta oprtunidad esta irremediablemente perdida. Por lo tanto cualquier proceso irreversible en una maquina termica disminuye su rendimiento, es decir, reduce la cantidad de trabajo mecanico que puede obtenerse con una cierta cantidad de calor absorbido por la sustancia que evoluciona.

practica en siladin

Calor y temperatura.
La temperatura es la medida de energía cinética promedio de un cuerpo. La temperatura sólo mide la temperatura de un solo cuerpo.


Se realizó un experimento prendiendo una vela, y despues poniendo la mano a un costado de esta , y muy de cerca. Luego se puso la mano arriba de la vela, sin embargo no se podía acercar tanto como cuando se ponía de un lado de la vela la mano. 


Esto se debe a que las moléculas se expanden y suben; así 'golpeando' nuestra mano y haciendonos sentir dicha sensación.


La temperatura se mde con la ayuda de un termómetro, el cual sólo mide supropia temperatura.


Radiación: De un cuerpo depende de la temperatura más la cantidad de energía que se va a radiar.
En un experimento se obtuvo ayuda del motor de heron, en el cual era un simple ejemplo del motor de vapor. Vapor = 100 °C
Que con la ayuda del vapor que sacaba se lograba mover.

Después de que nos explicaron todos los experimentos, se concluyo que la presión atmosférica es un factor muy importante, ya que también por esta se es más fácil respirar en la playa, que respirar en una montaña.

Actividad de leboratorio

Actividad:  "Conversión de trabajo en calor."

Material:
Cautín, madera, metal, piedra, taladro con broca, termómetro.

Procedimiento:
A.- Colocar la broca al taladro y aplicar durante dos minutos la acción de taladrar a la madera, el metal y la piedra.
B.-Medir la temperatura después de los dos minutos en cada caso.
C.-Dibujar sobre la madera un motivo para grabarlo con el cautín.

Equipo
Temperatura madera
Metal
Piedra
1
100C
190C
170C
2
160C
190C
180C
3
170 C
19 0C
160 C
4
150C
190C
170C
5
180C
190C
170C
6
18OC
190C
18.50C

Graficar los datos para cada material (equipo-temperatura).

Conclusiones:
El taladro produce un trabajo y al aplicarlo sobre estas tres superficies se trasformo en calor, el metal al ser el mejor conductor, es el de la temperatura más alta con 19°C y le siguen la madera y la piedra cuyas mediciones fueron my variables,
Gracias a esta actividad pudimos observa cómo se transforma el trabajo en calor en una superficie

Maquinas termicas y eficiencia de maquinas ideales

maquinas termicas:
Las máquinas térmicas son máquinas de fluido compresible:
  • En los motores térmicos, la energía del fluido que atraviesa la máquina disminuye, obteniéndose energía mecánica.
  • En el caso de generadores térmicos, el proceso es el inverso, de modo que el fluido incrementa su energía al atravesar la máquina.
Tal distinción es puramente formal: Los motores térmicos, son máquinas que emplean la energía resultante de un proceso, generalmente de combustión, para incrementar la energía de un fluido que posteriormente se aprovecha para la obtención de energía mecánica. Losciclos termodinámicos empleados, exigen la utilización de una máquina o grupo generador que puede ser hidráulico (en los ciclos de turbina de vapor) o térmico (en los ciclos de turbina de gas), de modo que sin éste el grupo motor no puede funcionar, de ahí que en la práctica se denomine Motor Térmico al conjunto de elementos atravesados por el fluido, y no exclusivamente al elemento en el que se obtiene la energía mecánica.

Teniendo en cuenta lo anterior, podemos clasificar las máquinas térmicas tal como se recoge en el cuadro siguiente .

Motoras:  volumetricas---> alternativas (maquina de vapor)
                                         rotativas (motor rotativo de aire caliente)
               turbomáquinas--> turbinas
Generadoras:  volumétricas--> alternativas (compresor de embolo)
                                                rotativas (compresor rotativo)
                       turbomáquinas-> turbocompresores

practica de: Aplicaciones de las formas de calor: conducción, convección, radiación.

Evaporación en el metal de la parafina:  2:41 s
Evaporación  en el metal naranja: 2:52 s
Temperatura inicial del agua con acerrín: 17°C

1° minuto: 34°
2° minuto: 46°
3° minuto: 54°
4° minuto: 64°
5° minuto: 73°
6° minuto: 81° ---------> empezó a dar vueltas el acerrín
7° minuto: 89°
8°minuto: 94---->temperatura final


17 vueltas por minuto dio el radiometro.

Primera Ley de la Termodinámica

El primer principio de la termodinámica o primera ley de la termodinámica,[1] se postula a partir del siguiente hecho experimental:
En un sistema cerrado adiabático (aislado) que evoluciona de un estado inicial \mathcal{A} a otro estado final \mathcal{B}, el trabajo realizado no depende ni del tipo de trabajo ni del proceso seguido.
Más formalmente, este principio se descompone en dos partes;Este enunciado supone formalmente definido el concepto de trabajo termodinámico, y sabido que los sistemas termodinámicos sólo pueden interaccionar de tres formas diferentes (interacción másica, interacción mecánica e interacción térmica). En general, el trabajo es una magnitud física que no es una variable de estado del sistema, dado que depende del proceso seguido por dicho sistema. Este hecho experimental, por el contrario, muestra que para los sistemas cerrados adiabáticos, el trabajo no va a depender del proceso, sino tan solo de los estados inicial y final. En consecuencia, podrá ser identificado con la variación de una nueva variable de estado de dichos sistemas, definida como energía interna.
Se define entonces la energía interna, U,como una variable de estado cuya variación en un proceso adiabático es el trabajo intercambiado por el sistema con su entorno:
 \Delta U = + \ W
Cuando el sistema cerrado evoluciona del estado inicial A al estado final B pero por un proceso no adiabático, la variación de la Energía debe ser la misma, sin embargo, ahora, el trabajo intercambiado será diferente del trabajo adiabático anterior. La diferencia entre ambos trabajos debe haberse realizado por medio de interacción térmica. Se define entonces la cantidad de energía térmica intercambiada Q (calor) como:
Q = \Delta U - W\,
Esta definición suele identificarse con la ley de la conservación de la energía y, a su vez, identifica el calor como una transferencia de energía. Es por ello que la ley de la conservación de la energía se utilice, fundamentalmente por simplicidad, como uno de los enunciados de la primera ley de la termodinámica:
La variación de energía de un sistema termodinámico cerrado es igual a la diferencia entre la cantidad de calor y la cantidad de trabajointercambiados por el sistema con sus alrededores.
En su forma matemática más sencilla se puede escribir para cualquier sistema cerrado:
 \Delta U = Q + W\,
donde:
\Delta U\, es la variación de energía del sistema,
 Q\, es el calor intercambiado por el sistema a través de unas paredes bien definidas, y
 W\, es el trabajo intercambiado por el sistema a sus alrededores

cambios de energía interna por calor y trabajo

Energía InternaPara comprender los fenómenos térmicos es necesario imaginar los cuerpos materiales como almacenes de partículas dotadas de movimiento de diferentes tipos: vibración, rotación y traslación. Cada uno de estos movimientos pueden ser transferidos a otra partícula que no lo tenga, mediante algún tipo de interacción, como por ejemplo choques o acciones ejercidas a distancia. Se dice en estos casos que las partículas tienen energía, la cual puede ser aumentada o disminuida, aumentando cualquiera de estos tipos de movimientos o todos a la vez.
La Energía Total de un objeto material depende del número de partículas que tenga, de la energía cinética de cada una de ellas y de la energía proveniente de las interacciones entre ellas. Esta energía total es la Energía Interna que tiene el cuerpo.
Esto quiere decir que un objeto material tiene mucha energía interna por tres razones: o porque tiene muchas partículas o átomos componentes, o porque sus átomos o partículas componentes tienen una energía muy alta., o ambas cosas a la vez, como ocurre en el caso de una estrella.

Calor? 
Cuando se transfiere energía de un cuerpo a otro porque las temperaturas de los cuerpos son diferentes se dice que se ha transferido energía calórica o calor. La energía calórica o calor fluye de los cuerpos más calientes hacia los más fríos. Para entender cómo ocurre esto, es necesario apoyarse en el concepto de Temperatura.

Actualmente se habla de calor en Física solamente en aquellos casos donde se transfiere energía por diferencia de temperatura, las otras situaciones donde se produce calentamiento hay que explicarlas sin uso del término calor, como es el caso del calentamiento del clavo por efecto del martilleo sobre él.

Variación de la energía interna efectuando trabajo mecánico. 
Otra forma de calentar o enfriar un cuerpo es por medio del trabajo mecánico, ejemplos de esto ocurren cuando nos frotamos las manos para calentarlas, cuando nos lanzamos por un tobogán largo, cuando se martilla un clavo, cuando se pule la superficie de un carro y un sin número de otras experiencias donde los cuerpos se calientan por el mero roce entre sus partes, pero en ninguno de esos casos, el calentamiento de los cuerpos ocurre por el contacto con una fuente a más alta temperatura.

Se habla de trabajo mecánico porque se aplica una fuerza sobre los cuerpos y se produce un desplazamiento de ellos a consecuencia de esa fuerza. El Trabajo mecánico se mide a través del producto de la componente de la fuerza que actúa en un cuerpo en la dirección del desplazamiento, multiplicada por el desplazamiento, es decir: 
Trabajo = Fuerza D* Desplazamiento
Donde Fuerza D, es la componente de la fuerza en la dirección del desplazamiento.
 

Para entender cómo ocurre la transferencia de energía, es necesario imaginar las superficies de los cuerpos en contacto y pensar que las partículas o átomos de una superficie están interactuando con los átomos de la otra, transfiriéndose así el movimiento producido por las fuerzas que actúan sobre ambos materiales.
En estos casos la energía interna de ambos cuerpos aumenta porque aumentó su temperatura, es decir aumentó la energía de sus partículas, a consecuencia del roce entre los cuerpos.

Recapitulación 12

El martes 26 elaboramos una práctica en la sala TELMEX, la cual me sirvió puesto que reforce mis conocimientos hacerca del MRU, y como fue en computadora, no me pareció burrida.
El jueves 28 realizamos una práctica en el laboratorio sobre conducción, convección y radiación que son formas de transferencia de energía y el profesor nos explico como es cada proceso.

Aplicaciones de las formas de calor: conducción, convección, radiación.

TRANSFERENCIA DE CALOR POR CONDUCCIÓN

Si existe una diferencia de temperatura en el interior de un líquido o un gas, es casi seguro que se producirá un movimiento del fluido. Este movimiento transfiere calor de una parte del fluido a otra por un proceso llamado convección. El movimiento del fluido puede ser natural o forzado. Si se calienta un líquido o un gas, su densidad (masa por unidad de volumen) suele disminuir. Si el líquido o gas se encuentra en el campo gravitatorio, el fluido más caliente y menos denso asciende, mientras que el fluido más frío y más denso desciende. Este tipo de movimiento, debido exclusivamente a la no uniformidad de la temperatura del fluido, se denomina convección natural. La convección forzada se logra sometiendo el fluido a un gradiente de presiones, con lo que se fuerza su movimiento de acuerdo a las leyes de lamecánica de fluidos.
Supongamos, por ejemplo, que calentamos desde abajo una cacerola llena de agua. El líquido más próximo al fondo se calienta por el calor que se ha transmitido por conducción a través de la cacerola. Al expandirse, su densidad disminuye y como resultado de ello el agua caliente asciende y parte del fluido más frío baja hacia el fondo, con lo que se inicia un movimiento de circulación. El líquido más frío vuelve a calentarse por conducción, mientras que el líquido más caliente situado arriba pierde parte de su calor por radiación y lo cede alaire situado por encima.

TRANSFERENCIA DE CALOR POR RADIACIÓN

La teoría estadística de la radiación representó un enorme papel en el desarrollo de la teoría cuántica. La teoría electromagnética clásica de la luz, que había explicado un amplio círculo de fenómenos vinculados con la propagación de la luz, y que había logrado aceptación general a fines del S. XIX, a principios del S. XX se encontró con dificultades insuperables en relación con el problema de la emisión de la luz y, en particular, con el de la radiación térmica. Entendemos por radiación térmica toda la radiación emitida por un cuerpo calentado.
Como es sabido, el carácter de la luz emitida y, en particular, su intensidad, como también la dependencia de ésta respecto de la frecuencia (composición espectral de la radiación) están determinados por la temperatura y la naturaleza del cuerpo emisor.
Sin embargo, hay un caso en que la composición espectral de la radiación es independiente de la naturaleza del emisor y viene determinada exclusivamente por su temperatura. Se trata de la llamada radiación de equilibrio.
Imaginemos una cavidad cerrada, con paredes que no dejan pasar el calor y mantenidas a una determinada temperatura T. Las paredes de la cavidad emitirán y absorberán ondaselectromagnéticas.
Dado que toda la radiación electromagnética se encuentra confinada en la cavidad cerrada, al cabo de un cierto tiempo se establecerá en el sistema un estado de equilibrio estadístico. Las paredes de la cavidad emitirán, por unidad de tiempo, la misma energía electromagnética que absorben. En la cavidad existirá un sistema de ondas electromagnéticas estacionarias que no variarán con el tiempo.
La densidad de energía del correspondiente campo electromagnético dentro de la cavidad se expresa como: 

La radiación térmica contendrá diferentes frecuencias. La densidad de energía que corresponde a un intervalo de frecuencias dado dv, será distinta, evidentemente, para las diferentes frecuencias. La densidad de energía de la radiación de frecuencia dada dependerá también de la temperatura T de las paredes emisoras. De esta manera,

Un simple razonamiento termodinámico prueba si embargo, que es independiente de la naturaleza del emisor, en particular, de las paredes (de las propiedades absorbentes y emisoras, del estado de la superficie, etc.).
Consideremos, en efecto, dos cavidades cuyas paredes se calientan hasta la misma temperatura, pero constituidas por materiales distintos. Supongamos que la densidad de la energía espectral de la radiación dependa de la naturaleza del emisor y sea diferente en una y otra cavidad. Entonces, poniendo en comunicación ambas cavidades, es posible romper el equilibrio. La radiación pasará a aquella cavidad en la que su densidad sea menor. Como resultado de esto, la densidad de radiación de dicha cavidad crecerá, las paredes de la misma absorberán más energía, y su temperatura se elevará. Entre las paredes de ambas cavidades se establece una diferencia de temperaturas que se puede utilizar para obtener trabajo útil.

martes, 26 de octubre de 2010

practica de sala telmex

El Movimiento Rectilíneo Uniforme
-          En Internet, individualmente indagaran; el tema: El movimiento Rectilíneo Uniforme.
-          Describir y anotar bibliografía
conceptos básicos del MRU

Posición: Es el
lugar físico en el que se encuentra un cuerpo dentro de un espacio determinado. Movimiento: Es el cambio de lugar que experimenta un cuerpo dentro de un espacio determinado.
Desplazamiento: Es un cambio de
lugar sin importar el camino seguido o el tiempo empleado, tiene una relación estrecha con el movimiento de un cuerpo.
Trayectoria: Es la línea que une las diferentes posiciones que a medida que pasa el
tiempo va ocupando un punto en el espacio o, de otra forma, es el camino que sigue el objeto dentro de un movimiento. Velocidad: Distancia que recorre un móvil representada en cada unidad de tiempo.
Rapidez: Es un escalar de la
velocidad en un instante dado o es la velocidad que lleva el móvil u objeto en una trayectoria. Velocidad media: Promedio de la suma de todas las distancias y tiempos recorridos.

E= suma de todos los valores

V= velocidad media (m/s)

Edm= distancias (m)
Vm= E d / E t
Et= tiempos (s)


Es aquel que lleva a cabo un móvil en línea recta y se dice que es uniforme cuando recorre distancias iguales en tiempos iguales.
La ecuación del
movimiento rectilíneo uniforme MRU es:
Datos Fórmula d= distancia (m)   v= velocidad (m/s) d= vt t= tiempo (s)

-           
-           
-          ¿Podrá ponerse en movimiento un cuerpo, sólo a expensas de sus fuerzas internas?


Se considera que un cuerpo es incapaz de ponerse en movimiento únicamente a expensas de sus fuerzas internas. éste es un prejuicio. Basta con citar el ejemplo del misil que sólo se mueve merced a sus fuerzas internas.
Lo cierto es que estas últimas no pueden provocar un movimiento igual de toda la masa del cuerpo. Pero ellas son capaces, por ejemplo, de imprimir un movimiento a una parte de éste hacia adelante, y a la otra, otro movimiento hacia atrás. Así sucede en el caso del misil.

Discusión en equipo de la respuesta a la pregunta anterior:
Cada equipo presenta al grupo sus respuestas y se llega a un consenso de la respuesta:



De la actividad experimental se obtuvieron los datos de distancia recorrida por el móvil y el tiempo, calcular la velocidad, graficar  en Excel  distancia-velocidad y pegar la gráfica en este documento.

tabulacion

Distancia cm
Tiempo segundos
Velocidad cm/seg
20
0.5
40
40
1.1
36.36
60
1.7
35.29
80
2.1
38.09
100
2.8
35.71
120
3.5
34.28

grafica 








En equipo analizar los resultados obtenidos y escribir su conclusión:
a mayor distancia menor es la velocidad y mayor el tiempo
Localizar en Internet el: Simulador del Movimiento  Rectilíneo Uniforme, de acuerdo a la escala del simulador, obtener seis datos de distancia y el tiempo de recorrido para calcular la velocidad del móvil. Graficar en Excel distancia-velocidad y pegar la gráfica en este documento. 

tabulacion

Lectura
Distancia cm
Tiempo segundos
Velocidad cm/seg
1
5
1.5
3.3
2
13
3.6
3.6
3
19
5.4
3.51
4
26
7.4
3.51
5
38
10.7
3.55
6
46
13
3.53


grafica











Escribir la dirección del simulador utilizado:
En equipo analizar  los resultados obtenidos y escribir su conclusión:
entre mas aumenta la distancia el tiempo tambien aumenta y la velocidad sigue siendo constante
Comparar las conclusiones obtenidas del experimento con las del Simulador y escribir las conclusiones finales con referencia a la Pregunta inicial: